#### 台灣 桃園市建國東路 22 號

NO.22, Jianguo E, Rd., Taoyuan City, Taiwan, R.O.C. TEL:+886-3-375-9888 FAX:+886-3-375-6966

# **SPECIFICATION**

## **BLUE STORM PRO 500**

Main Feature:
Low Noise
Meet 80plus
Active PFC Circuit
Full Range Input
ATX2.3 Version

DEC. 10, 2008 REV: 1.00



### **MODEL: BLUE STORM PRO 500**

#### **Revision History**

| Rev  | <u>Description</u> | <u>Date</u> | <u>Author</u> |
|------|--------------------|-------------|---------------|
| 1.00 |                    | 2008/12/10  |               |
|      |                    |             |               |
|      |                    |             |               |
|      |                    |             |               |
|      |                    |             |               |
|      |                    |             |               |

#### 1. GENERAL DESCRIPTION AND SCOPE

This is the specification of Model <u>BLUE STORM PRO 500</u>; AC-line powered switching power supply with active PFC (Power Factor Correction) circuit, meets EN61000-3-2 and with Full Range Input features.

The specification below is intended to describe as detailed as possible the functions and performance of the subject power supply. Any comment or additional requirements to this specification from our customers will be highly appreciated and treated as a new target for us to approach.

#### 2. REFERENCE DOCUMENTS

The subject power supply will meet the EMI requirements and obtain main safety approvals as following:

#### 2.1. EMI REGULATORY

#### 2.2. SAFETY

- FCC CISPR22/1997(Class B Limit)
- CE:

EN 55022/2006(CISPR 22/2005)

EN 55024/1998+A1/2001+A2/2003

EN 61000-3-2/2006

EN 61000-3-3/1995+A1/2001+A2/2005

EN 61204-3/2000

#### 3. INPUT ELECTRICAL SPECIFICATIONS

#### 3.1. AC INPUT

| Parameter                 | Min. | Nom. <sup>(1)</sup> | Max. | Unit               |
|---------------------------|------|---------------------|------|--------------------|
| V <sub>in</sub> (115VAC)  | 90   | 115                 | 135  | VAC <sub>rms</sub> |
| V <sub>in</sub> (230VAC)  | 180  | 230                 | 265  | VAC <sub>rms</sub> |
| V <sub>in</sub> Frequency | 47   |                     | 63   | HZ                 |

<sup>◆</sup> Nominal voltages for test purposes are considered to be within ±1.0V of nominal.

#### 3.2. INRUSH CURRENT

Maximum inrush current from power-on (with power on at any point on the AC sine) and including, but not limited to, three line cycles, shall be limited to a level below the surge rating of the input line cord, AC switch if present, bridge rectifier, fuse, and EMI filter components. Repetitive ON/OFF cycling of the AC input voltage should not damage the power supply or cause the input fuse to blow.

#### 3.3. INPUT LINE CURRENT & POWER FACTOR (P.F.)

#### (At Full load)

| AC input | Input line current | P.F.@ Full Load | P.F.@ Pin=75W |
|----------|--------------------|-----------------|---------------|
| 115V     | < 6.0Amps – rms    | > 0.95          | > 0.8         |
| 230V     | < 3.0Amps – rms    | > 0.9           | > 0.65        |

#### 3.4. EFFICIENCY

#### 3.4.1 General

Under the load conditions defined in Table 1 and Table 2. The loading condition for testing efficiency shown in Table 1 represents a fully loaded system. a  $\sim 50\%$  (typical) loaded system. and a  $\sim 20\%$  (light) loaded system.

**Table 1. Loading Table for Efficiency Measurements** 

| 500W(loading shown in Amps) |       |       |       |       |      |       |
|-----------------------------|-------|-------|-------|-------|------|-------|
| Loading                     | +12V1 | +12V2 | +5V   | +3.3V | -12V | +5Vsb |
| FULL                        | 15.69 | 15.69 | 12.92 | 12.92 | 0.44 | 2.18  |
| TYPICAL                     | 7.85  | 7.85  | 6.46  | 6.46  | 0.22 | 1.09  |
| LIGHT                       | 3.14  | 3.14  | 2.58  | 2.58  | 0.09 | 0.44  |

Table 2. Minimum Efficiency Vs Load

| Loading                     | Voltage | FULL | TYPICAL | LIGHT |
|-----------------------------|---------|------|---------|-------|
| Required Minimum Efficiency | 115V    | 80%  | 81%     | 80%   |
| Required Minimum Efficiency | 230V    | 81%  | 82%     | 80%   |

Minimum Efficiency for test purposes are considered to be within  $\pm 1.0\%$  of nominal

#### 4. OUTPUT ELECTRICAL REQUIREMENTS

#### 4.1. OUTPUT VOLTAGE AND CURRENT RATING

| Output | MINIMUM<br>LOAD | NORMAL<br>LOAD | MAXIMUM<br>LOAD | PEAK<br>LOAD | LOAD<br>REG. | LINE REG. | Ripple & Noise |
|--------|-----------------|----------------|-----------------|--------------|--------------|-----------|----------------|
| +3.3V  | 0.1A            | 12A            | 24A             |              | ±5%          | ±1%       | 50mV P-P       |
| +5V    | 0.2A            | 12A            | 24A             |              | ±5%          | ±1%       | 50mV P-P       |
| +12V1  | 0.1A            | 9A             | 18A             |              | ±5%          | ±1%       | 120mV P-P      |
| +12V2  | 0.5A            | 9A             | 18A             | 19A          | ±5%          | ±1%       | 120mV P-P      |
| -12V   | 0A              | 0.25A          | 0.5A            |              | ±10%         | ±1%       | 120mV P-P      |
| +5VSB  | 0A              | 1.25A          | 2.5A            | 3.5A         | ±5%          | ±1%       | 50mV P-P       |

<sup>(1) +3.3</sup>V & +5V total output not exceed 123W.

Voltages and ripple are measured at the load side of mating connectors with a 0.1 uF monolithic ceramic capacitor paralleled by a 10 uF electrolytic capacitor across the measuring terminals.

<sup>(2)</sup> Maximum combined current for the +12V outputs shall be 36A.

<sup>(3) +12</sup>V2 Peak current is 19A (less then 10m Sec.), minimum voltage during peak is >11.0Vdc.

<sup>(4) +5</sup>Vsb Peak current is 3.5A(less then 500m Sec.), minimum voltage during peak is > 4.5Vdc.

#### 4.2. LOAD CAPACITY SPECIFICATIONS

The cross regulation defined as follows, the voltage regulation limits DC include DC Output ripple & noise.

| LOAD        | +3.3V | +5V  | +12V1 | +12V2 | -12V  | +5VSB |
|-------------|-------|------|-------|-------|-------|-------|
| Condition_1 | X     | X    | X     | X     | X     | 2.5A  |
| Condition_2 | 0.2A  | 0.2A | 0.1A  | 0.5A  | 0A    | 0A    |
| Condition_3 | 0.3A  | 0.2A | 0.1A  | 0.5A  | 0.5A  | 0.05A |
| Condition_4 | 0.5A  | 5A   | 18A   | 18A   | 0A    | 0.5A  |
| Condition_5 | 0.1A  | 15A  | 2A    | 2A    | 0A    | 0.5A  |
| Condition_6 | 0.9A  | 24A  | 15A   | 15A   | 0.3A  | 2.5A  |
| Condition_7 | 12A   | 12A  | 10A   | 10A   | 0.25A | 2.5A  |
| Condition_8 | 20A   | 2A   | 2A    | 2A    | 0A    | 1A    |
| Condition_9 | 24A   | 8.5A | 15A   | 15A   | 0.5A  | 2.5A  |

#### 4.3. HOLD-UP TIME (@FULL LOAD of Table 1.)

115V / 60Hz : 17 mSec. Minimum. 230V / 50Hz : 17 mSec. Minimum.

The output voltage will remain within specification, in the event that the input power is removed or interrupted, for the duration of one cycle of the input frequency. The interruption may occur at any point in the AC voltage cycle. The power good signal shall remain high during this test.

#### 4.4. OUTPUT RISE TIME

#### (10% TO 95% OF FINAL OUTPUT VALUE, @ FULL LOAD)

115V-rms or 230V-rms + 3.3Vdc : 20ms Maximum

+ 5Vdc: 20ms Maximum + 12Vdc: 20ms Maximum + 5Vsb: 20ms Maximum - 12Vdc: 20ms Maximum

#### 4.5. OVER VOLTAGE PROTECTION

| Voltage Source | Protection Point |
|----------------|------------------|
| +3.3V          | 3.76V-4.5V       |
| +5V            | 5.6V-7.0V        |
| +12V           | 13.0V-16.5V      |

#### 4.6. OVER CURRENT PROTECTION

| OUTPUT VOLTAGE | Max. over current limit |
|----------------|-------------------------|
| +3.3V          | 60A                     |
| +5V            | 48A                     |
| +12V1          | 30A                     |
| +12V2          | 30A                     |

#### 4.7. SHORT CIRCUIT PROTECTION

Output short circuit is defined to be a short circuit load of less than 0.1 ohm.

In the event of an output short circuit condition on +3.3V, +5V, +12V or -12V output, the power supply will shutdown and latch off without damage to the power supply. The power supply shall return to normal operation after the short circuit has been removed and the power switch has been turned off for no more than 2 seconds.

#### 4.8. POWER SIGNAL

| POWER GOOD @115/230V, FULL LOAD | 100 –500mSec.   |
|---------------------------------|-----------------|
| POWER FAIL @115/230V, FULL LOAD | 1 mSec. minimum |

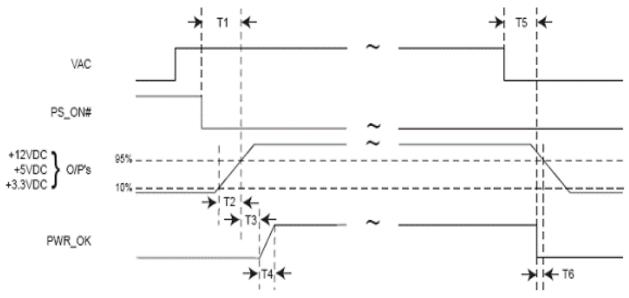



Figure:

T1: Power-on time shall be less than 500 ms (T1 < 500 ms).

T2: Rise time : 0.1 ms to 20 ms (0.1 ms  $\leq$  T2  $\leq$  20 ms).

T3: Power-ok delay time: 100 ms < T3 < 500 ms

T4: Power-ok rise time: T4  $\leq$  1 ms

T5 + T6: AC loss to PWR\_OK hold-up time :T5 + T6  $\geq$  17 ms

#### 5. FAN NOISE REQUIREMENTS

5.1. The subject power supply is cooled by a self-contained, 120mm, 12VDC fan.

#### 5.2. FAN NOISE

| AC INPUT | FULL (Table 1.) | TYPICAL (Table 1.) | LIGHT (Table 1.) |
|----------|-----------------|--------------------|------------------|
| 115V     | NOISE≦38dB      | NOISE≦32dB         | NOISE≦28dB       |
| 230V     | NOISE≦38dB      | NOISE≦32dB         | NOISE≦28dB       |

#### 6. ENVIRONMENTAL REQUIREMENTS

The power supply will be compliant with each item in this specification for the following Environmental conditions.

#### 6.1. TEMPERATURE RANGE

| Operating | +10 to +50 deg. C |
|-----------|-------------------|
| Storage   | -20 to +80 deg. C |

#### 6.2. HUMIDITY

| Operating | 5 –95% RH, Non-condensing |
|-----------|---------------------------|
| Storage   | 5 –95% RH, Non-condensing |

#### 6.3. VIBRATION

The subject power supply will withstand the following imposed conditions without experiencing non-recoverable failure or deviation from specified output characteristics.

Vibration Operating – Sine wave excited, 0.25 G maximum acceleration, 10-250 Hz swept at one octave / min. Fifteen minute dwell at all resonant points, where resonance is defined as those exciting frequencies at which the device under test experiences excursions two times large than non-resonant excursions.

Plane of vibration to be along three mutually perpendicular axes.

#### 6.4. GROUND LEAKAGE CURRENT

The power supply ground leakage current shall be less than 3.5 mA.

#### 6.5. RELIABILITY

The power supply reliability,when calculated by MIL-HDBK-217; latest revision, are exceed 100,000 hours with all output at maximum load and an ambient temperature of  $25^{\circ}$ C.

#### 6.6. DIELECTRIC STRENGTH

Primary to Frame Ground: 1800 Vac for 1 sec. Primary to Secondary: 1800 Vac for 1 sec

#### 6.7. INSULATION RESISTANCE

Primary to Frame Ground: 20 Meg.ohms Minimum

Primary to Secondary: 20 Meg.ohms Minimum

#### 7. LABELLING

Label marking will be permanent, legible and complied with all agency requirements.

#### 7.1. MODEL NUMBER LABEL

Labels will be affixed to the sides of the power supply showing the following:

- Manufacturer's name and logo.
- Model no., serial no., revision level, location of manufacturer.
- The total power output and the maximum load for each output.
- AC input rating.

#### 8. MECHANICAL SPECIFICATIONS

The mechanical drawing of the subject power supply, which indicate the form factor, location of the mounting holes, location, the length of the connectors, and other physical specifications of the subject power supply. Please refer to the attachment drawing.